125 research outputs found

    Pseudorandom Bits for Oblivious Branching Programs

    Get PDF
    We construct a pseudorandom generator that fools known-order read-k oblivious branching programs and, more generally, any linear length oblivious branching program. For polynomial width branching programs, the seed lengths in our constructions are O(n^(1−1/2^(k−1))) (for the read-k case) and O(n/log log n) (for the linear length case). Previously, the best construction for these models required seed length (1 − Ω(1))n

    Lower Bounds for Matrix Factorization

    Get PDF
    We study the problem of constructing explicit families of matrices which cannot be expressed as a product of a few sparse matrices. In addition to being a natural mathematical question on its own, this problem appears in various incarnations in computer science; the most significant being in the context of lower bounds for algebraic circuits which compute linear transformations, matrix rigidity and data structure lower bounds. We first show, for every constant dd, a deterministic construction in subexponential time of a family {Mn}\{M_n\} of n×nn \times n matrices which cannot be expressed as a product Mn=A1AdM_n = A_1 \cdots A_d where the total sparsity of A1,,AdA_1,\ldots,A_d is less than n1+1/(2d)n^{1+1/(2d)}. In other words, any depth-dd linear circuit computing the linear transformation MnxM_n\cdot x has size at least n1+Ω(1/d)n^{1+\Omega(1/d)}. This improves upon the prior best lower bounds for this problem, which are barely super-linear, and were obtained by a long line of research based on the study of super-concentrators (albeit at the cost of a blow up in the time required to construct these matrices). We then outline an approach for proving improved lower bounds through a certain derandomization problem, and use this approach to prove asymptotically optimal quadratic lower bounds for natural special cases, which generalize many of the common matrix decompositions

    A Polynomial Degree Bound on Equations for Non-Rigid Matrices and Small Linear Circuits

    Get PDF

    A Lower Bound on Determinantal Complexity

    Get PDF
    The determinantal complexity of a polynomial PF[x1,,xn]P \in \mathbb{F}[x_1, \ldots, x_n] over a field F\mathbb{F} is the dimension of the smallest matrix MM whose entries are affine functions in F[x1,,xn]\mathbb{F}[x_1, \ldots, x_n] such that P=Det(M)P = Det(M). We prove that the determinantal complexity of the polynomial i=1nxin\sum_{i = 1}^n x_i^n is at least 1.5n31.5n - 3. For every nn-variate polynomial of degree dd, the determinantal complexity is trivially at least dd, and it is a long standing open problem to prove a lower bound which is super linear in max{n,d}\max\{n,d\}. Our result is the first lower bound for any explicit polynomial which is bigger by a constant factor than max{n,d}\max\{n,d\}, and improves upon the prior best bound of n+1n + 1, proved by Alper, Bogart and Velasco [ABV17] for the same polynomial.Comment: v2: corrected a few typos and added reference

    Subexponential Size Hitting Sets for Bounded Depth Multilinear Formulas

    Get PDF
    In this paper we give subexponential size hitting sets for bounded depth multilinear arithmetic formulas. Using the known relation between black-box PIT and lower bounds we obtain lower bounds for these models. For depth-3 multilinear formulas, of size exp(n^delta), we give a hitting set of size exp(~O(n^(2/3 + 2*delta/3))). This implies a lower bound of exp(~Omega(n^(1/2))) for depth-3 multilinear formulas, for some explicit polynomial. For depth-4 multilinear formulas, of size exp(n^delta), we give a hitting set of size exp(~O(n^(2/3 + 4*delta/3)). This implies a lower bound of exp(~Omega(n^(1/4))) for depth-4 multilinear formulas, for some explicit polynomial. A regular formula consists of alternating layers of +,* gates, where all gates at layer i have the same fan-in. We give a hitting set of size (roughly) exp(n^(1-delta)), for regular depth-d multilinear formulas of size exp(n^delta), where delta = O(1/sqrt(5)^d)). This result implies a lower bound of roughly exp(~Omega(n^(1/sqrt(5)^d))) for such formulas. We note that better lower bounds are known for these models, but also that none of these bounds was achieved via construction of a hitting set. Moreover, no lower bound that implies such PIT results, even in the white-box model, is currently known. Our results are combinatorial in nature and rely on reducing the underlying formula, first to a depth-4 formula, and then to a read-once algebraic branching program (from depth-3 formulas we go straight to read-once algebraic branching programs)

    Unbalancing Sets and An Almost Quadratic Lower Bound for Syntactically Multilinear Arithmetic Circuits

    Get PDF
    We prove a lower bound of Ω(n²/log²n) on the size of any syntactically multilinear arithmetic circuit computing some explicit multilinear polynomial f(x₁,...,x_n). Our approach expands and improves upon a result of Raz, Shpilka and Yehudayoff ([34]), who proved a lower bound of Ω(n^(4/3)/log²n) for the same polynomial. Our improvement follows from an asymptotically optimal lower bound for a generalized version of Galvin's problem in extremal set theory. A special case of our combinatorial result implies, for every n, a tight Ω(n) lower bound on the minimum size of a family F of subsets of cardinality 2n of a set X of size 4n, so that any subset of X of size 2n has intersection of size exactly n with some member of F. This settles a problem of Galvin up to a constant factor, extending results of Frankl and Rödl [15] and Enomoto et al. [12], who proved in 1987 the above statement (with a tight constant) for odd values of n, leaving the even case open

    Lower Bounds on Stabilizer Rank

    Get PDF
    The stabilizer rank of a quantum state ? is the minimal r such that |?? = ?_{j = 1}^r c_j |?_j? for c_j ? ? and stabilizer states ?_j. The running time of several classical simulation methods for quantum circuits is determined by the stabilizer rank of the n-th tensor power of single-qubit magic states. We prove a lower bound of ?(n) on the stabilizer rank of such states, improving a previous lower bound of ?(?n) of Bravyi, Smith and Smolin [Bravyi et al., 2016]. Further, we prove that for a sufficiently small constant ?, the stabilizer rank of any state which is ?-close to those states is ?(?n/log n). This is the first non-trivial lower bound for approximate stabilizer rank. Our techniques rely on the representation of stabilizer states as quadratic functions over affine subspaces of ???, and we use tools from analysis of boolean functions and complexity theory. The proof of the first result involves a careful analysis of directional derivatives of quadratic polynomials, whereas the proof of the second result uses Razborov-Smolensky low degree polynomial approximations and correlation bounds against the majority function

    Unbalancing Sets and an Almost Quadratic Lower Bound for Syntactically Multilinear Arithmetic Circuits

    Get PDF
    We prove a lower bound of Omega(n^2/log^2 n) on the size of any syntactically multilinear arithmetic circuit computing some explicit multilinear polynomial f(x_1, ..., x_n). Our approach expands and improves upon a result of Raz, Shpilka and Yehudayoff ([Ran Raz et al., 2008]), who proved a lower bound of Omega(n^{4/3}/log^2 n) for the same polynomial. Our improvement follows from an asymptotically optimal lower bound for a generalized version of Galvin\u27s problem in extremal set theory

    Succinct Hitting Sets and Barriers to Proving Lower Bounds for Algebraic Circuits

    Get PDF
    We formalize a framework of algebraically natural lower bounds for algebraic circuits. Just as with the natural proofs notion of Razborov and Rudich (1997) for Boolean circuit lower bounds, our notion of algebraically natural lower bounds captures nearly all lower bound techniques known. However, unlike in the Boolean setting, there has been no concrete evidence demonstrating that this is a barrier to obtaining super-polynomial lower bounds for general algebraic circuits, as there is little understanding whether algebraic circuits are expressive enough to support “cryptography” secure against algebraic circuits. Following a similar result of Williams (2016) in the Boolean setting, we show that the existence of an algebraic natural proofs barrier is equivalent to the existence of succinct derandomization of the polynomial identity testing problem, that is, to the existence of a hitting set for the class of poly(N)-degree poly(N)-size circuits which consists of coefficient vectors of polynomials of polylog(N) degree with polylog(N)-size circuits. Further, we give an explicit universal construction showing that if such a succinct hitting set exists, then our universal construction suffices. Further, we assess the existing literature constructing hitting sets for restricted classes of algebraic circuits and observe that none of them are succinct as given. Yet, we show how to modify some of these constructions to obtain succinct hitting sets. This constitutes the first evidence supporting the existence of an algebraic natural proofs barrier. Our framework is similar to the Geometric Complexity Theory (GCT) program of Mulmuley and Sohoni (2001), except that here we emphasize constructiveness of the proofs while the GCT program emphasizes symmetry. Nevertheless, our succinct hitting sets have relevance to the GCT program as they imply lower bounds for the complexity of the defining equations of polynomials computed by small circuits. A conference version of this paper appeared in the Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC 2017)
    corecore